《有理数》数学教案

时间:2024-07-13 22:01:15
《有理数》数学教案

《有理数》数学教案

在教学工作者开展教学活动前,常常要根据教学需要编写教案,借助教案可以更好地组织教学活动。写教案需要注意哪些格式呢?下面是小编帮大家整理的《有理数》数学教案,仅供参考,大家一起来看看吧。

《有理数》数学教案1

教学目的:

1。知识目标 使学生了解了负数产生的背景,理解正、负数及零的意义,掌握正、负数的表示方法,会用正、负数表示具有相反意义的量。

2.能力目标 通过本节教学,培养学生的想象能力、理论联系实际能力、分析解决问题的能力;并向学生渗透"对立统一"、"实践第一"等辩证唯物主义观点;

3.思想目标 对学生进行爱国主义思想教育;培养学生良好的个性品质和学习习惯。

教学设计

本课教材所处位置,是小学所学算术数之后数的范围的第一次扩充,是算术数到有理数的衔接与过渡,并且是以后学习数轴、相反数、绝对值以及有理数运算的基础。

重点

正、负数的意义,

难点

负数的意义及0的内涵。

教学方法:

鉴于初一年级学生的年龄特点,他们对概念的理解能力不强,精神不能长时间集中,但思维比较活跃。我决定采取启发式教学法及情感教学,创设问题情境,引导学生主动思考,用大量的实例和生动的语言激发学生学习兴趣,调节学习情绪。并利用计算机和投影胶片辅助教学,增大教学密度。

教学过程的设计,分为四部分。

一、创设情境,引入负数;

二、联系对比,突出重点;

三、课堂练习,及时反馈;

四、总结提高,渗透德育。

在引入部分,我通过介绍数的产生与发展,向学生渗透"实践第一"的辩证唯物主义观点:原始社会,从打猎记数开始,首先出现自然数,经过漫长岁月,人们用数"0"表示没有,随着人类的不断进步,在丈量土地进行分配时,又用小数使测量结果更加准确。使同学们感到,数的第一次发展都是为了满足社会生产与生活的需要。

随之提问:同学们小学都学过哪些数?

为了给下节课讲述有理数概念及分类作好铺垫,我把学生们答出的数归类为整数和分数。

那么小学学过的这些数能否满足社会生产生活及数学自身发展的需要呢?

为了体现负数是从实践中产生的,我选择了三个学生较熟悉的例子,用计算机显示动画效果,采取形象化教学。

(计算机)比如零上5°C,它比0°C高5°C,可记作5°C,而零下5°C比0°C低5°C,怎么表示呢?珠穆朗玛峰高出海平面8848米,吐鲁番盆地低于海平面155米,怎样表示二者的海拔高度?又如向东走3米与向西走3米、收入50元与支出50元等等。还可以联系抗洪实际,让学生思考怎样用数学来区分高区警戒水位1米与低于警戒水位1米呢?

通过创设问题情境,激发学生的求知欲望让不同水平的学生都在教师的引导下进行积极的思维参与,兴致勃勃的参与学习活动,既体现了教师的主导作用,又突出了学生的主体地位,师生共同进入角色。

以上实例说明,小学学过的那些数不能满足实际需要,而且数的局限也阻碍了数学自身向前发展。如小学遇到0-2、3-5这类题我们束手无策。以上种种矛盾及不便我们如何解决呢?

使学生感到数的扩充势在必行,扩充的根源是社会生产生活的需要及数学自身发展的需要。

既然小学学过的数不能满足需要,我们需要引出新的数。根据同学们的生活经验,零下5°C,比0°C低5°C,那么有没有比0还上的数呢?此时,负数已到了呼之欲出的地步,学生顺利地接受了这一事实,负数自然而然的引出了。

接下来讲解正、负数的定义及本节课的重点、难点,我采取联系对比的方法,始终不脱离小学所学知识。在给出正、负数的定义时,我采取比较轻松的态度,尽量避免使概念复杂化:小学学过的大于零的数就是正数,负数就是在正数前面加上一个"-"号。让学生觉得数学并不难学。在讲述正、负数的表示法、读法后,强调这里的"+""-"是性质符号,虽然与表示运算符号的加号、减号涵义不同,但又能完全统一,因此形式上是一样的。在学运算时会有更深刻的理解。

从温度计上观察0°C以上的温度用正数表示,0°C以下的温度用负数表表示,说明正数都大于0,负数都小于0,0是正数与负数的界限。因此,0既不是正数也不是负数。0是非正非负的中性数。对于0的认识,我们小学知道,0表示没有,又知道0的一些性质:0不能作除数、0乘以任何数都得0等。其实,0不仅仅表示没有:比如:0°C并不是没有温度,水位线定为0米并不是没有高度。在实际意义中,0是用来表示基准的数,比如海平面、警戒水位等。因此,0是一个实际存在的数量,它比所有正数都小,又比所有负数都大。当然,0的内涵还很丰富,我们将在以后陆续学到。

以上对数0表示量的意义的分析,实际上能够帮助学生加深对负数的认识和理解。正数、0、负数的大上关系在学生的头脑中初步形成,也为下一节课讲述有理数分类打下基础。

在此选取课本练习1让学生口答,巩固对正、负数的认识。并把课本例1作为练习给出。目的是使学生熟悉正、负数的特征,会判断一个数是正数还是负数。

为了突出正、负数的意义这一重点,就要突出它的实践性。那么,与引入部分呼应,有了负数以后,那些不能解决的问题就迎刃而解了。零上5°C可记作5°C或+5°C,零下5°C可记作-5°C;珠穆朗玛峰海拔8848米,吐鲁番盆地海拔-155米;收入50元记作+50元,支出50元记作-50元等等。同学们观察、正、负数所表示的两个意义正好相反的量,叫做具有相反意义的量。有趣的是,在千世界中,有上就有下,有升就有降,有收入就有支出,有赢就有亏损。因此,上仍相反意义的量是普遍存在的。正、负数的一个重要应用就是能表示两个具有相反意义的量。为了加深学生对具有相反意义的量的理解,请学生再举一些日常生活中的例子,总结出具有相反意义的量的特征:

(1)意义相反 (2)同一种量

并解释相反与相异的区别。比如向东走3米向北走3米就不是具有相反意义的量。并通过以下练习加以巩固。

由于用负数表示实际问题对学生来说很不习惯,是理解上的难点,如何讲解难点呢?在此要向学生渗透相反意义所隐含的辩证关系。

"+""-"作为性质符号有着更深层的涵义:

"+"表示与问题中给出意义的相同意义,

"-"表示与问题中给出意义的相反意义,

如:前进+5米,表示真正前进5米,

前进-5米,表示后退5米,

那么,后退-5米就表示前进5米。并通过课本例2加以巩固。

为了加深对正、负数的意义及对具有相反意义的量的理解,我安排了这样一个练习:

……此处隐藏14227个字……___________,读作__________或读作___________;

(2)在中,-2是__________,4是__________,读作__________或读作__________;

(3)在中,底数是_________,指数是__________,读作__________;

(4)5,底数是___________,指数是_____________.

【教法说明】此组练习是巩固乘方的有关概念,及时反馈学生掌握情况.(2)、(3)小题的区别表示底数是-2,指数是4的幂;而表示底数是2,指数是4的幂的相反数.为后面的计算做铺垫.通过第(4)小题指出一个数可以看作这个数本身的一次方,如5就是,指数1通常省略不写.

师:到目前为止,对有理数业说,我们已经学过几种运算?分别是什么?其运算结果叫什么?

学生活动:同学们思考,前后桌同学互相讨论交流,然后举手回答.

生:到目前为止,已经学习过五种运算,它们是:

运算:加、减、乘、除、乘方;

运算结果:和、差、积、商、幂;

教师对学生的回答给予评价并鼓励.

【教法说明】注重学生在认知过程中的思维.主动参与,通过学生讨论、归纳得出的知识,比教师的单独讲解要记得牢,同时也培养学生归纳、总结的能力.

师:我们知道,乘方和加、减、乘、除一样,也是一种运算,如何进行乘方运算?请举例说明.

学生活动:学生积极思考,同桌相互讨论,并在练习本上举例.

【教法说明】通过学生积极动脑,主动参与,得出可以利用有理数的乘法运算来进行有理数乘方的运算.向学生渗透转化的思想.

2.练习:(出示投影2)

计算:1.(1)2, (2), (3), (4).

2.(1),,,.

(2)-2,,.

3.(1)0, (2), (3), (4).

学生活动:学生独立完成解题过程,请三个学生板演,教师巡回指导,待学生完成后,师生共同评价对错,并予以鼓励.

师:请同学们观察、分析、比较这三组题中,每组题中底数、指数和幂之间有什么联系?

先让学生独立思考,教师边巡视边做适当提示.然后让学生讨论,老师加入某一小组.

生:正数的任何次幂都是正数;负数的奇次幂是负数,负数的偶次幂是正数,零的任何次幂都是零.

师:请同学们继续观察与,与中,底数、指数和幂之间有何联系?你能得出什么结论呢?

学生活动:学生积极思考,同桌之间、前后桌之间互相讨论.

生:互为相反数的两个数的奇次幂仍互为相反数,偶次幂相等.

师:请同学思考一个问题,任何一个数的偶次幂是什么数?

生:任何一个数的偶次幂是非负数.

师:你能把上述结论用数学符号表示吗?

生:(1)当时,(为正整数);

(2)当

(3)当时,(为正整数);

(4)(为正整数);

(为正整数);

(为正整数,为有理数).

【教法说明】教师把重点放在教学情境的设计上,通过学生自己探索,获取知识.教师要始终给学生创造发挥的机会,注重学生参与.学生通过特殊问题归纳出一般性的结论,既训练学生归纳总结的能力和口头表达的能力,又能使学生对法则记得牢,领会的深刻.

《有理数》数学教案15

教学目标

1. 会把有理数的加减法混合运算统一为加法运算;

2. 会把省略加号和括号的有理数加减混合运算看成几个有理数的加法运算;

3.进一步感悟“转化”的思想.

教学重点

把有理数的加减法混合运算统一为加法运算.

教学难点

省略负数前面的加号的有理数加法,运用运算律交换加数位置时,符号不变.

教学过程

根据有理数的减法法则,有理数的加减速混合运算可以统一为加法运算.

1.完成下列计算:

(1) 3+7-12; (2)(-8)-(-10)+(-6)-(+4).

归纳: 根据有理数的减法法则,有理数的加减混合运算可以统一为 运算;

(2)式统一成加法是________________________________;

省略负数前面的加号和( )后的形式是______________________;

读作____________________ 或 _______________________.

展示交流

1.把下列运算统一成加法运算:

(1)(-12)+(-5)-(-8)-(+9)=_____________________________;

(2)(-9)-(+5)-(-15)-(+9)=_____________________________;

(3) 2+5-8=_________________________________;

(4) 14-(-12)+(-25)-17=_____________________________________.

2. 将下列有理数加法运算中,加号省略:

(1)12+(-8)=________________;

(2)(-12)+(-8)=_________________________________;

(3)(-9)+(-5)+(+15)+(-20)= ____________________________.

3.将下列运算先统一成加法,再省略加号:

(-15)-(+63)-(-35)-(+24)+(-12)=_________________________

=_________________________.

4. 仿照本P37例6,完成下列计算:

(1) -4-5+6 ; (2) -23+41-24+12-46.

5. 仿照本P38例7,巡道员沿东西方向的铁路巡视维护,从住地出发,他先向东巡视了6km,休息之后,继续向东维护了4km;然后折返向西巡视了12.5 km,此时他在住地的什么方向?与驻地的距离是多少?

盘点收获

个案补充

课堂反馈

1.计算:

2.早晨6:00的气温为 ℃,到中午2:00气温上升了8℃,到晚上10:00气温又下降了9℃.晚上10:00的气温是多少?

迁移创新

一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?

课堂作业

本P39 习题2 .5第6题(1)、 (3)、(5), 第7题 .

《《有理数》数学教案.doc》
将本文的Word文档下载到电脑,方便收藏和打印
推荐度:
点击下载文档

文档为doc格式